

Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

[Copper-based Press Fitting]

from

[BESCO GmbH]

Programme:

The International EPD System, www.environdec.com

Programme operator:

EPD International AB

Type of EPD:

EPD of multiple products from a company

EPD registration number:

EPD-IES-0028095:001

Version date:

2026-01-19

Validity date:

2031-01-19

An EPD may be updated or republished if conditions change. To find the latest version of the EPD and to confirm its validity, see www.environdec.com EPD of multiple products, based on the representative results of the product group

GENERAL INFORMATION

Programme Information	
Programme:	The International EPD® System
Address:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
Website:	www.environdec.com
E-mail:	support@environdec.com

Product Category Rules (PCR)
CEN standard EN 15804 serves as the Core Product Category Rules (PCR)
Product Category Rules (PCR): CONSTRUCTION PRODUCTS, PCR 2019:14, VERSION 2.0.1 ,Valid until 2030-04-07>, UNCPG code: 415
PCR review was conducted by: <Rob Rouwette >
c-PCR, if applicable: Not available

Third-party Verification
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:
<input checked="" type="checkbox"/> Individual EPD verification without a pre-verified LCA/EPD tool
Third-party verifier: <Michael ZHU Jiang Approved by: International EPD System
*EPD process certification involves an accredited certification body certifying and periodically auditing the EPD process and conducting external and independent verification of EPDs that are regularly published. More information can be found in the General Programme Instructions on www.environdec.com .
Procedure for follow-up of data during EPD validity involves third party verifier:
<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but published in different EPD programmes, may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same first-digit version number) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have identical scope in terms of included life-cycle stages (unless the excluded life-cycle stage is demonstrated to be insignificant); apply identical impact assessment methods (including the same version of characterisation factors); and be valid at the time of comparison.

For further information about comparability, see EN 15804 and ISO 14025.

INFORMATION ABOUT EPD OWNER

Owner of the EPD:

Besco GmbH

Address:

Märkische Str. 12, 47809 Krefeld, Germany

Contact:

jemmy.lee@bescofittings.de

Address and contact information of the LCA practitioner commissioned by the EPD owner, if applicable:

Karen Wu from Besco GmbH

karenwu@bescofittings.de

Description of the organisation:

Besco fittings is a copper fittings manufacturer based in Germany and production facilities in China. In 2001, they started the OEM fittings manufacturing with the purpose of supplying the plumbing distribution companies with quality products and affordable prices. A team of industry professional was assembled, their purpose being to maintain a natural climate of dialogue and openness with all the customers by providing them with responses adapted to needs and a business promise of win-win. They have developed new quality standards and new products made from selected materials like copper, brass, bronze, steel, stainless steel etc. Our tight relationship with European customers prompted the opportunity of opening, in 2009, of a new subsidiary and a warehouse in Krefeld, Germany under the name of Besco GmbH. Today, our products are well represented by our partners from European markets like: Germany, France, Belgium, Poland, Italy, Sweden.

Product-related or management system-related certifications:

None

PRODUCT INFORMATION

Product name

Copper-based Press Fitting

Product identification:

Product Series	Model Numbers
V Profile Copper Press Fittings-GP Water Series	GP5001, GP5002, GP5040, GP5041, GP5270, GP5270S, GP5130, GP5240, GP5243, GP5301, GP5085, GP5086,
V Profile Bronze Press fitting-GP Water Series	GP4090, GP4092, GP4130, GP4243, GP4270, GP4280, GP4281, GP4331, GP4330, GP4330G, GP4355, GP4471, GP4976, GP4977
M Profile Copper Press Fittings-GP Water Series	68200, 68210, 68240, 68230, 68100, 68110, 68030, 68430, 68000, 68040, 68410, C63580, C63590, 68350, 68360, 6510, 68320, 68310, 68340, 68020, 68010, 68120, 63590, 68080, 68090, 68091, 62460, 62800

UN CPC code: 415

LCA INFORMATION

Declared unit: 1 kg

Reference service life:

Not applicable

Time representativeness:

2024.01.01~2024.12.31

Geographical scope:

China for A1-A3, GLO for C1-C4, and D

Database(s) and LCA software used:

Ecoinvent 3.10 and Simapro 10.1.

Description of system boundaries:

a) Cradle to gate with modules C1–C4 and module D (A1-A3 + C + D);

Process flow diagram:

More information:

A1-A2 stage

The primary raw material is bronze and red copper depending on the series of the pressing fitting, while auxiliary materials include ethanol and silica sand used to polish and clean the products. Packaging consists of EUR-flat pallets, corrugated boxes, PET packing straps and LDPE packaging. The total transportation are modelled under “Transport, freight, lorry, unspecified {RoW}| transport, freight, lorry, all sizes, EURO5 to generic market for transport, freight, lorry, unspecified | Cut-off, S”

Manufacturing (A3)

The process for copper pressing fittings begin with blanking, where pipe fittings are cast from copper powder, the components then undergo deburring to eliminate copper powder residue from internal and external surfaces. Next, hydraulic grooving shapes smooth, wrinkle- and mark-free grooves via water pressure, followed by double-end rolling grooving to create full, evenly smooth inner grooves after which rings are test-fitted to verify proper tightness. The fittings are then sized per the finished product drawing, pressing the stop position into place while ensuring no surface marks or cracks. Qualified units are stored in the semi-finished warehouse, then polished to a glossy surface free of scratches, patina, or discoloration. Full inspection then combines go/no-go gauge spot-checks with

comprehensive appearance reviews, after which customer-specified markings are applied and the fittings are packaged to the customer's requirements. Finally, a repeat inspection qualifies the finished items for storage in the finished goods warehouse.

The climate impact of the energy source behind electricity in the manufacturing process in A3 is shown below:

Province involved	Process	Production mix	Technology year	GWP-GHG (kgCO ₂ /kWh)
Zhejiang	Casting and machining	Electricity, medium voltage {CN-ECGC} market for electricity, medium voltage Cut-off, U	2024	0.855

End-of-Life (C1-C4)

The end-of-life stages begin with the deconstruction and demolition from the installation site, followed by transfer for recycling and disposal. It is assumed that the press fitting will be removed by manual labour, thus no additional energy/materials are needed. The discarded product is then transported either to the recycling site or to landfills for final disposal (C2); as a conservative assumption, a distance of 80 km to waste processing sites is adopted according to the PCR. Regarding waste treatment, the average recycling rate of copper after its life cycle is 60% (C3), and the remaining 40% is assumed to be landfilled (C4). The complete waste disposal process is based on a generic dataset from the Ecoinvent dataset, with the included scenarios currently in use and representative of one of the most likely scenario alternatives.

Module D

- Module D aims at transparency for the environmental benefits or loads resulting from reusable products, recyclable materials and/or useful energy carriers leaving a product system. All declared net benefits and loads from net flows leaving the product system that have passed the end-of-waste state shall be included in module D.
- In this LCA study, the recycling of steel from C3 are considered in module D. The copper/bronze recycled will be modelled as the avoided product via Copper-rich materials {GLO}| copper, anode to generic market for copper-rich materials | Cut-off, S

Excluded Processes

The following stages are excluded from the system boundary as their impacts are deemed irrelevant or minor to the copper press fitting product LCA:

- Production, disposal, and maintenance of infrastructure/capital equipment (buildings, machines, transport media, roads);
- Product storage phases;
- Accidental product losses (e.g., natural disasters, fires);
- Secondary and transit packaging materials.

Cut-off Rules

No specific cut-off rules—all flows with potential for significant air/water/soil emissions are included.

Allocation

In the production of copper press fittings, special production is used because all the inputs and outputs are clearly corresponding to the products. Steel wire scraps bear economic costs and thus treated as reaching EoW at the factory gate.

Key Assumptions

The key assumptions of this Life Cycle Assessment (LCA) study are presented as follows:

- Regarding copper press fittings, the average across manufacturing sites is adopted.
- For transportation, an ecoinvent dataset of unspecified transport load under the EURO5 standard is selected, specifically “Transport, freight, lorry, unspecified {RoW} | transport, freight, lorry, all sizes, EURO5 to generic market for transport, freight, lorry, unspecified | Cut - off, S”.
- It is assumed that the demolition and deinstallation of products such as copper press fittings are carried out through manual labor.

Data quality Assessments

According to EN15941 Annex C, the Environmental Product Declaration (EPD) for press fitting is based on data collected by Besco Company from its Taizhou Manufacturing Plants over the period 2024/01/01~2024/12/31. This EPD is representative of press fitting at Besco's Taizhou sites and for all press fitting under study are manufactured from the corresponding manufacturing sites. The datasets cover the geographical boundary (China) for the life cycle stages of the press fitting. The EPD utilizes background data from Ecoinvent 3.10.1 database. Data quality—evaluated for *time, geographical, and technological representativeness* per EN 15804:2012+A2:2019, Annex E, E1 shows Fair to Good in most cases. The EPD uses electricity consumption mix to improve its geographical representativeness and the manufacturing electricity consumption contributes to a fraction of 9.2% for climate change-total category over A-C life cycles for copper press fitting.

Per the PCR 2019:14 version 2.0.1 requirement, processes contributing more than 10% of the GWP-GHG impact category over the A1-A3 should be reported, which is documented in the following

Datasets	Type of Source	Source	Reference Year	Data Category	Share
Bronze {GLO} market for bronze Cut-off, S	Database	Ecoinvent 3.10.1	2024	Representative secondary data	46.6%
Copper, cathode {GLO} market for copper, cathode Cut-off, S	Database	Ecoinvent 3.10.1	2024	Representative secondary data	41.4%

Modules declared, geographical scope, share of primary data (in GWP-GHG results) and data variation (in GWP-GHG results):

	Product stage			Distribution/installation stage		Use stage						End-of-life stage				Beyond product life cycle	
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling-potential
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Modules declared	X	X	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	X	X	X	X	X
Geography	CN	CN	CN										GL O	GL O	GL O	GL O	GLO
Share of primary data	10.05%					-	-	-	-	-	-	-	-	-	-	-	-
Variation – products	0%*					-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites	N.A.					-	-	-	-	-	-	-	-	-	-	-	-

*: The EPD covers various products of copper press fitting with different lengths. Per the declared unit of 1kg, the materials and manufacturing (A1-A3) for the products are same. Thus, no variation of products is presented.

*: “The share of primary data is calculated based on GWP-GHG results. It is a simplified indicator for data quality that supports the use of more primary data, to increase the representativeness of and comparability between EPDs. Note that the indicator does not capture all relevant aspects of data quality and is not comparable across product categories.

Process	Source type	Source	Reference year	Data category	Share of primary data
Generation of electricity (manufacturing use)	Database	Ecoinvent v3.10	2024	Primary data	9.1%
Raw materials transport (A2)	Database	Ecoinvent v3.10	2024	Primary data	0.954%
Other processes	Database	Ecoinvent v3.10	2024	Secondary data	0%
Total share of primary data (GWP-GHG, A1-A3)					10.05%

ENVIRONMENTAL PERFORMANCE

LCA results of the product(s) - main environmental performance results

Mandatory impact category indicators according to EN 15804 with EF3.1

Results per declared unit							
Indicator	Unit	A1-A3	C1	C2	C3	C4	D
Climate change - total	kg CO ₂ eq	8.72E+00	0.00E+00	3.14E-02	1.86E-02	2.13E-03	-3.73E+00
Climate change - Fossil	kg CO ₂ eq	8.69E+00	0.00E+00	3.14E-02	1.85E-02	2.13E-03	-3.71E+00
Climate change - Biogenic	kg CO ₂ eq	1.53E-02	0.00E+00	5.54E-06	4.87E-05	6.76E-07	-9.26E-03
Climate change - Land use and LU change	kg CO ₂ eq	1.22E-02	0.00E+00	1.28E-05	2.16E-05	1.30E-06	-6.30E-03
Ozone depletion	kg CFC11 eq	3.87E-07	0.00E+00	4.45E-10	2.09E-10	5.28E-11	-3.52E-08
Acidification	mol H ⁺ eq	5.91E-01	0.00E+00	1.05E-04	1.86E-04	1.48E-05	-4.54E-01
Eutrophication, freshwater	kg P eq	4.69E-02	0.00E+00	2.53E-06	9.09E-06	2.12E-07	-2.22E-02
Eutrophication, marine	kg N eq	3.06E-02	0.00E+00	3.38E-05	4.32E-05	5.59E-06	-1.57E-02
Eutrophication, terrestrial	mol N eq	4.24E-01	0.00E+00	3.68E-04	4.84E-04	6.11E-05	-2.24E-01
Photochemical ozone formation	kg NMVOC eq	1.19E-01	0.00E+00	1.48E-04	1.44E-04	2.10E-05	-7.01E-02
Resource use, minerals and metals	kg Sb eq	8.31E-03	0.00E+00	9.85E-08	9.65E-07	5.07E-09	-6.57E-03
Resource use, fossils	MJ	1.07E+02	0.00E+00	4.45E-01	2.23E-01	4.52E-02	-4.51E+01
Water use	m ³ depriv.	9.15E+00	0.00E+00	2.14E-03	2.89E-03	2.73E-03	-7.03E+00

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks."

The results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3).

Biogenic carbon have been balanced out already in modules A1-A3.

Additional mandatory and voluntary impact category indicators

Results per declared unit							
Indicator	Unit	A1-A3	C1	C2	C3	C4	D
GWP-GHG	kg CO ₂ eq	8.72E+00	0.00E+00	3.14E-02	1.86E-02	2.13E-03	-3.73E+00

Resource use indicators

Results per declared unit							
Indicator	Unit	A1-A3	C1	C2	C3	C4	D
PERE	MJ	2.56E+01	0.00E+00	5.87E-03	2.71E-02	6.36E-04	-1.36E+01
PERM	MJ	1.39E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	2.57E+01	0.00E+00	5.87E-03	2.71E-02	6.36E-04	-1.36E+01
PENRE	MJ	1.06E+02	0.00E+00	4.45E-01	2.23E-01	4.52E-02	-4.51E+01
PENRM	MJ	5.06E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	1.07E+02	0.00E+00	4.45E-01	2.23E-01	4.52E-02	-4.51E+01
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m ³	2.26E-01	0.00E+00	6.27E-05	8.82E-05	6.49E-05	-1.63E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials;

PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-

Results per declared unit

renewable secondary fuels; FW = Use of net fresh water

Option A method has been applied for primary energy indicators. PENRM and PERM are balanced in A1-A3 stage.

Waste indicators

Results per declared unit							
Indicator	Unit	A1-A3	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2.45E+00	0.00E+00	5.35E-04	1.13E-03	3.00E-01	-1.82E+00
Non-hazardous waste disposed	kg	1.38E+01	0.00E+00	4.17E-03	8.14E-03	3.01E-01	-6.49E+00
Radioactive waste disposed	kg	2.23E-04	0.00E+00	9.50E-08	1.82E-07	1.02E-08	-1.01E-04

Output flow indicators

Results per declared unit							
Indicator	Unit	A1-A3	C1	C2	C3	C4	D
Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Material for recycling	kg	0.00E+00	0.00E+00	0.00E+00	6.00E-01	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy, electricity	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy, thermal	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Additional LCA results (other environmental performance results) of the product(s)

This EPD does not declare additional LCIA impact categories

ADDITIONAL ENVIRONMENTAL INFORMATION

The sensitivity analysis is carried out based on the requirements from the PCR 2019:014 version 2.0.1. Recycling scenarios for 100% recycling, 100% incineration and 100% landfill of the copper press fitting product are analyzed in the sensitivity analysis.

C & D impacts for 100% landfill scenario

Remark	Unit	C1	C2	C3	C4	D
Climate change	kg CO2 eq	0.00E+00	1.26E-02	0.00E+00	7.11E-03	0.00E+00
Climate change - Fossil	kg CO2 eq	0.00E+00	1.26E-02	0.00E+00	7.10E-03	0.00E+00
Climate change - Biogenic	kg CO2 eq	0.00E+00	2.22E-06	0.00E+00	2.25E-06	0.00E+00
Climate change - Land use and LU change	kg CO2 eq	0.00E+00	5.12E-06	0.00E+00	4.34E-06	0.00E+00
Acidification	mol H+ eq	0.00E+00	1.78E-10	0.00E+00	1.76E-10	0.00E+00
Eutrophication, freshwater	kg P eq	0.00E+00	4.20E-05	0.00E+00	4.92E-05	0.00E+00
Eutrophication, marine	kg N eq	0.00E+00	1.01E-06	0.00E+00	7.08E-07	0.00E+00
Eutrophication, terrestrial	mol N eq	0.00E+00	1.35E-05	0.00E+00	1.86E-05	0.00E+00
Photochemical ozone formation	kg NMVOC eq	0.00E+00	1.47E-04	0.00E+00	2.04E-04	0.00E+00
Ozone depletion	kg CFC11 eq	0.00E+00	5.93E-05	0.00E+00	7.01E-05	0.00E+00
Resource use, minerals and metals	kg Sb eq	0.00E+00	3.94E-08	0.00E+00	1.69E-08	0.00E+00
Resource use, fossils	MJ	0.00E+00	1.78E-01	0.00E+00	1.51E-01	0.00E+00
Water use	m3 depriv.	0.00E+00	8.55E-04	0.00E+00	9.11E-03	0.00E+00

C & D impacts for 100% incineration scenario

Remark	Unit	C1	C2	C3	C4	D
Climate change	kg CO2 eq	0.00E+00	3.14E-02	0.00E+00	2.34E-02	0.00E+00
Climate change - Fossil	kg CO2 eq	0.00E+00	3.14E-02	0.00E+00	2.33E-02	0.00E+00
Climate change - Biogenic	kg CO2 eq	0.00E+00	5.54E-06	0.00E+00	2.01E-05	0.00E+00

Remark	Unit	C1	C2	C3	C4	D
Climate change - Land use and LU change	kg CO2 eq	0.00E+00	1.28E-05	0.00E+00	4.49E-05	0.00E+00
Acidification	mol H+ eq	0.00E+00	4.45E-10	0.00E+00	4.26E-10	0.00E+00
Eutrophication, freshwater	kg P eq	0.00E+00	1.05E-04	0.00E+00	1.37E-04	0.00E+00
Eutrophication, marine	kg N eq	0.00E+00	2.95E-07	0.00E+00	3.28E-07	0.00E+00
Eutrophication, terrestrial	mol N eq	0.00E+00	3.33E-05	0.00E+00	5.22E-05	0.00E+00
Photochemical ozone formation	kg NMVOC eq	0.00E+00	3.67E-04	0.00E+00	5.71E-04	0.00E+00
Ozone depletion	kg CFC11 eq	0.00E+00	1.48E-04	0.00E+00	1.90E-04	0.00E+00
Resource use, minerals and metals	kg Sb eq	0.00E+00	9.85E-08	0.00E+00	6.56E-08	0.00E+00
Resource use, fossils	MJ	0.00E+00	4.45E-01	0.00E+00	3.82E-01	0.00E+00
Water use	m3 depriv.	0.00E+00	2.14E-03	0.00E+00	1.06E-02	0.00E+00

C & D impacts for 100% recycling scenario

Remark	Unit	C1	C2	C3	C4	D
Climate change	kg CO2 eq	0.00E+00	1.26E-02	3.10E-02	0.00E+00	-6.21E+00
Climate change - Fossil	kg CO2 eq	0.00E+00	1.26E-02	3.09E-02	0.00E+00	-6.19E+00
Climate change - Biogenic	kg CO2 eq	0.00E+00	2.22E-06	8.12E-05	0.00E+00	-1.54E-02
Climate change - Land use and LU change	kg CO2 eq	0.00E+00	5.12E-06	3.60E-05	0.00E+00	-1.05E-02
Acidification	mol H+ eq	0.00E+00	1.78E-10	3.49E-10	0.00E+00	-5.87E-08
Eutrophication, freshwater	kg P eq	0.00E+00	4.20E-05	3.10E-04	0.00E+00	-7.57E-01
Eutrophication, marine	kg N eq	0.00E+00	1.01E-06	1.52E-05	0.00E+00	-3.70E-02
Eutrophication, terrestrial	mol N eq	0.00E+00	1.35E-05	7.19E-05	0.00E+00	-2.61E-02
Photochemical ozone formation	kg NMVOC eq	0.00E+00	1.47E-04	8.07E-04	0.00E+00	-3.73E-01
Ozone depletion	kg CFC11 eq	0.00E+00	5.93E-05	2.40E-04	0.00E+00	-1.17E-01
Resource use, minerals and metals	kg Sb eq	0.00E+00	3.94E-08	1.61E-06	0.00E+00	-1.09E-02
Resource use, fossils	MJ	0.00E+00	1.78E-01	3.72E-01	0.00E+00	-7.52E+01
Water use	m3 depriv.	0.00E+00	8.55E-04	4.82E-03	0.00E+00	-1.17E+01

ADDITIONAL SOCIAL AND ECONOMIC INFORMATION

None

INFORMATION RELATED TO SECTOR EPD

This is not a sector EPD

ABBREVIATIONS

Abbreviation	Definition
General Abbreviations	
EN	European Norm (Standard)
EF	Environmental Footprint
GPI	General Programme Instructions
ISO	International Organization for Standardization
CEN	European Committee for Standardization
CLC	Co-location centre
CPC	Central product classification
GHS	Globally harmonized system of classification and labelling of chemicals
GRI	Global Reporting Initiative
SVHC	Substances of Very High Concern
ND	Not Declared
ADP	Abiotic Depletion Potential
AP	Acidification Potential
CR	Components for recycling
CRU	Components for re-use
CSI	Construction specification Institute
EE	Exported energy per energy carrier
EP	Eutrophication Potential
EPC	Engineered Plastic Composite

EPD	Environmental Product Declaration
ETP	Potential comparative Toxic for ecosystem
FW	Use of net fresh water
GWP	Global Warming Potential
HTP	Potential comparative Toxic for Humans
HWD	Hazardous waste disposed
IBU	Institut Bauen und Umwelt e.V.
IRP	Ionizing Radiation, human health
ISO	International Organization for Standardization
LCA	Life cycle assessment
MER	Materials for energy recovery
MR	Materials for recycling
MSDS	Material Safety Data Sheet
NHWD	Non-hazardous waste disposed
NRSF	Use of none renewable secondary fuels
ODP	Ozone Layer Depletion Potential
PCR	Product Category Rules
PENRE	Non-renewable primary resources used as an energy carrier (fuel)
PENRM	Non-renewable primary resources with energy content used as material
PENRT	Total use of Non-renewable primary energy resources
PERE	Renewable primary energy used as energy carrier (fuel)
RERM	Renewable primary re- sources with energy content used as material
PERT	Total use of renewable primary energy resources
PM	Particulate Matter emissions
POCP	Photochemical Ozone Creation Potential
PUR	Polyurethane
PVC	Polyvinyl chloride
RSF	Use of renewable secondary fuels
RWD	Radioactive waste disposed
SGCC	State Grid Corporation of China
SM	Secondary materials
UL	Underwriters Laboraties Inc.
WDP	Water (user) deprivation potential, deprivation-weighted water consumption

REFERENCES

- General Programme Instructions of International EPD System. Version. 5.0.1
- Ecoinvent, 2024. Swiss Centre for Life Cycle Assessment, v3.10 (www.ecoinvent.ch).
- EN 15804:2012+A2:2019/AC:2021, Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products.
- ISO 14025:2006, Environmental labels and declarations-Type III environmental declarations- Principles and procedures.
- ISO 14040: 2006/Amd 1:2020 Environmental management - Life cycle assessment - Principles and framework Amendment 1 (ISO 2020).
- ISO 14044: 2006/Amd 2:2020 Environmental management - Life cycle assessment - Requirements and guidelines Amendment 2 (ISO 2020).
- EPD International PCR for Construction Product 2019:14 version 2.0.1 valid until 2030-04-07

VERSION HISTORY

This is a new submission

